Genetic fingerprint
The sudden swine flu scare meant that health organisations across the world needed a fast response, and less than two months after the first reports of an unusual flu-like virus, scientists at the UK’s Health Protection Agency (HPA) produced the first genetic fingerprint of the virus. Dr Monica Galiano, clinical virologist at the HPA says, ‘We have been able to sequence the first complete genomes of the recently emerged influenza H1N1 swine-lineage, including the strain that is being used by the National Institute for Biological Standards and Control to work on the vaccine.’ Galiano explains that, ‘the entire genetic information of an influenza virus is contained in eight genes, “chains” of nucleic acid or RNA which are composed of consecutive molecules called nucleotides. The sequencing process can “read” these chains in order to know the nucleotide sequence.’?
?
Mutations
The problem with influenza is that it can mutate quickly and combine with other influenza viruses. ‘The genome sequencing enables us to see and track these changes’, explains Dr Galiano. ‘Researchers have unravelled many of these changes or mutations and they know what can be expected from a virus which exhibits some specific mutations: some tell us that the virus may be resistant to antiviral drugs; other changes are linked to the ability of the virus to infect either birds or humans; some changes seem to help the virus to transmit better between humans; other changes might enable the virus to spread beyond the lungs and infect other organs like brain, intestine or liver, causing a more severe infection and even death.’?
?
Collaborative project
While a fast response is essential to halting the spread of a virus, the science can be time consuming and, until recently, quite expensive. However, as Galiano explains, new sequencing technologies have enabled many more researchers to study the complete genomes of hundreds of viruses and ‘we are working in a collaborative project funded by the Wellcome Trust to establish an influenza virus sequencing 'pipeline' to sequence large numbers of viral genomes.’ At the moment it appears that all the UK viruses are related, so a vaccine produced from one of these can be effective. ‘However,’ says Dr Galiano, ‘it will be crucial that we keep gathering as much genetic information as possible, in order to track possible changes whilst the virus evolves in humans, and to understand how these changes happen.’

更多資訊請瀏覽
?

基因指紋
突如其來的豬流感恐慌令全世界的衛(wèi)生組織都必須做出及時反應(yīng)。在第一例N1H1病毒發(fā)現(xiàn)后的兩個月之內(nèi),英國衛(wèi)生保護局(HPA)的科學(xué)家制作出了這種病毒的第一個基因指紋。HPA的臨床病毒學(xué)家莫妮卡?加利亞諾說:“我們已經(jīng)完成了最新出現(xiàn)的H1N1流感病毒第一個完整基因組的測序工作,包括英國國家生物學(xué)標(biāo)準(zhǔn)和管制所正在利用研制疫苗的品系。一個流感病毒的所有基因信息包括在八個基因當(dāng)中。這些基因是由核酸組成的鏈條。每個核酸都由連續(xù)的核苷酸分子組成?;驕y序工作就是‘解讀’這些鏈條,從而了解其中核苷酸的順序。”

突變
流感病毒的問題在于它能夠很快的發(fā)生突變并與其他的流感病毒結(jié)合?!盎蚪M測序能夠使我們了解并跟蹤這些變化,”加利亞諾博士解釋說。“研究人員已經(jīng)發(fā)現(xiàn)了很多變化或變異。通過一種病毒所表現(xiàn)出來的變異,科學(xué)家可以預(yù)知這種病毒的特性:一些變異能使病毒對抗病毒藥有免疫作用;一些變異能使其在人和鳥類中間傳播;另一些變異能夠使病毒人類中的傳播速度加快;還有一些變異能夠使病毒感染肺部之外的器官,像大腦、腸道或肝臟等,引起更嚴(yán)重的感染,甚至死亡。”
?
合作項目
快速的反應(yīng)是防治一種病毒所必不可少的,但是針對這種病毒的研究過程卻漫長又昂貴。加利亞諾博士說,新的基因組測序技術(shù)能夠使更多的研究人員參與到上百種完整病毒基因組的研究之中。“我們正在進行一個由維康基金資助的合作項目。這個項目的目標(biāo)是建立流感病毒測序的流水線,從而實現(xiàn)大規(guī)模的病毒基因組測序?!钡侥壳盀橹?,英國的所有流感病毒都是相互聯(lián)系的,因此針對其中一種的疫苗對其他病毒也會有效。加利亞諾博士說:“關(guān)鍵在于我們能夠不斷的收集更多的基因信息,從而能夠跟蹤病毒在人體中產(chǎn)生的各種變化,并了解這些變化產(chǎn)生的原因?!?/p>

?

?

該內(nèi)容來源于英國總領(lǐng)事館文化教育處
?

?